Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems
Bibliographische Detailangaben
- Titel
- Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow concepts, tools, and techniques to build intelligent systems
- verantwortlich
- ;
- Ausgabe
- Second edition
- veröffentlicht
- Erscheinungsjahr
- 2019
- Erscheint auch als
- Géron, Aurélien, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow, Second edition, Beijing : O'Reilly, 2019, XXV, 819 Seiten
- Andere Ausgaben
-
Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems
Mehr ... - Medientyp
- E-Book
- Datenquelle
- K10plus Verbundkatalog
- Tags
- Tag hinzufügen
Zugang
Weitere Informationen sehen Sie, wenn Sie angemeldet sind. Noch keinen Account? Jetzt registrieren.
- Details Klicken Sie hier, um den Inhalt der Registerkarte zu laden.
- Internformat Klicken Sie hier, um den Inhalt der Registerkarte zu laden.
- Zusammenfassung
- Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--Scikit-Learn and TensorFlow--author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets.
- Umfang
- 1 Online-Ressource (xxv, 819 Seiten); Illustrationen
- Sprache
- Englisch
- Schlagworte
- RVK-Notation
-
- Informatik
-
- Monografien
-
- Künstliche Intelligenz
-
- Expertensysteme; Wissensbasierte Systeme
- Informatik
-
- Monografien
-
- Künstliche Intelligenz
-
- Allgemeines
- Informatik
-
- Monografien
-
- Künstliche Intelligenz
-
- Soft computing, Neuronale Netze, Fuzzy-Systeme
- BK-Notation
- 54.72 Künstliche Intelligenz
- DDC-Notation
- 006.31
- ISBN
- 9781492032618