Deep learning and physics

Bibliographische Detailangaben

Titel
Deep learning and physics
verantwortlich
Tanaka, Akinori (VerfasserIn); Tomiya, Akio (VerfasserIn); Hashimoto, Koji (VerfasserIn)
veröffentlicht
Singapore: Springer, [2021]
© 2021
Erscheinungsjahr
2021
Teil von
Mathematical physics studies
Erscheint auch als
Tanaka, Akinori, Deep Learning and Physics, Singapore : Springer, 2021, 1 Online-Ressource (XIII, 207 Seiten)
Andere Ausgaben
Deep Learning and Physics
Medientyp
Buch
Datenquelle
K10plus Verbundkatalog
Tags
Tag hinzufügen

Zugang

Weitere Informationen sehen Sie, wenn Sie angemeldet sind. Noch keinen Account? Jetzt registrieren.

Andere Ausgaben

LEADER 05358cam a2200661 4500
001 183-1759943428
003 DE-627
005 20220929030231.0
007 tu
008 210607s2021 si ||||| 00| ||eng c
020 |a 9789813361072  |9 978-981-336-107-2 
024 7 |a 10.1007/978-981-33-6108-9  |2 doi 
035 |a (DE-627)1759943428 
035 |a (DE-599)KXP1759943428 
035 |a (OCoLC)1255400507 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XB-SG 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
084 |a ST 300  |2 rvk  |0 (DE-625)rvk/143650: 
084 |a SK 955  |2 rvk  |0 (DE-625)rvk/143274: 
084 |a 54.72  |2 bkl 
084 |a 33.06  |2 bkl 
100 1 |a Tanaka, Akinori  |e VerfasserIn  |0 (DE-588)1234943107  |0 (DE-627)1759944149  |4 aut 
245 1 0 |a Deep learning and physics  |c Akinori Tanaka, Akio Tomiya, Koji Hashimoto 
264 1 |a Singapore  |b Springer  |c [2021] 
264 4 |c © 2021 
300 |a xiii, 207 Seiten  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
490 0 |a Mathematical physics studies 
505 8 0 |a Chapter 1: Forewords: Machine learning and physics -- Part I Physical view of deep learning -- Chapter 2: Introduction to machine learning -- Chapter 3: Basics of neural networks -- Chapter 4: Advanced neural networks -- Chapter 5: Sampling -- Chapter 6: Unsupervised deep learning -- Part II Applications to physics -- Chapter 7: Inverse problems in physics -- Chapter 8: Detection of phase transition by machines -- Chapter 9: Dynamical systems and neural networks -- Chapter 10: Spinglass and neural networks -- Chapter 11: Quantum manybody systems, tensor networks and neural networks -- Chapter 12: Application to superstring theory -- Chapter 13: Epilogue -- Bibliography -- Index. 
520 |a What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored. 
650 0 |a Mathematical physics. 
650 0 |a Machine learning. 
689 0 0 |D s  |0 (DE-588)4193754-5  |0 (DE-627)105224782  |0 (DE-576)21008944X  |a Maschinelles Lernen  |2 gnd 
689 0 1 |D s  |0 (DE-588)4045956-1  |0 (DE-627)106199900  |0 (DE-576)209067276  |a Physik  |2 gnd 
689 0 |5 (DE-627) 
700 1 |a Tomiya, Akio  |e VerfasserIn  |0 (DE-588)1234944324  |0 (DE-627)1759945390  |4 aut 
700 1 |a Hashimoto, Koji  |d 1973-  |e VerfasserIn  |0 (DE-588)1236058305  |0 (DE-627)1761307215  |4 aut 
776 1 |z 9789813361089  |c eBook 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |a Tanaka, Akinori  |t Deep Learning and Physics  |d Singapore : Springer, 2021  |h 1 Online-Ressource (XIII, 207 Seiten)  |w (DE-627)1750020076  |z 9789813361089 
856 4 2 |u https://www.gbv.de/dms/tib-ub-hannover/1759943428.pdf  |m V:DE-601  |m B:DE-89  |q pdf/application  |v 2022-09-29  |3 Inhaltsverzeichnis 
924 0 |a 3981607996  |b DE-7  |9 7  |c GBV  |d c  |g AHI 200 = 2021 A 11872  |g 2021 A 11872  |h BBP 
924 0 |a 3941920952  |b DE-89  |9 89  |c GBV  |d c  |g T 21 B 3332 
924 0 |a 4002511677  |b DE-959  |9 959  |c GBV  |d c  |g TVS 175 343  |h W 
924 0 |a 4501347937  |b DE-21-98  |9 21/98  |c BSZ  |d b  |g Tana  |h Lehrstuhl Roth 
924 0 |a 4501348704  |b DE-21-98  |9 21/98  |c BSZ  |d b  |g Tana 
924 0 |a 394112207X  |b DE-16-108  |9 16/108  |c BSZ  |d b  |g PY/ST 300 T161 
924 0 |a 3935290063  |b DE-Frei3c  |9 Frei 3c  |c BSZ  |d b  |g M/Tanaka, A 
936 r v |a ST 300  |b Allgemeines  |k Informatik  |k Monografien  |k Künstliche Intelligenz  |k Allgemeines  |0 (DE-627)1271119005  |0 (DE-625)rvk/143650:  |0 (DE-576)201119005 
936 r v |a SK 955  |b Computational physics  |k Mathematik  |k Monografien  |k Computational physics  |0 (DE-627)1270715054  |0 (DE-625)rvk/143274:  |0 (DE-576)200715054 
936 b k |a 54.72  |j Künstliche Intelligenz  |0 (DE-627)10641240X 
936 b k |a 33.06  |j Mathematische Methoden der Physik  |0 (DE-627)106407937 
951 |a BO 
980 |a 1759943428  |b 183  |c sid-183-col-kxpbbi 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fkatalog.fid-bbi.de%3Agenerator&rft.title=Deep+learning+and+physics&rft.date=%5B2021%5D&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Deep+learning+and+physics&rft.series=Mathematical+physics+studies&rft.au=Tanaka%2C+Akinori&rft.pub=Springer&rft.edition=&rft.isbn=9813361077
SOLR
_version_ 1797788657520738304
author Tanaka, Akinori, Tomiya, Akio, Hashimoto, Koji
author_facet Tanaka, Akinori, Tomiya, Akio, Hashimoto, Koji
author_role aut, aut, aut
author_sort Tanaka, Akinori
author_variant a t at, a t at, k h kh
building Library A
collection sid-183-col-kxpbbi
contents Chapter 1: Forewords: Machine learning and physics -- Part I Physical view of deep learning -- Chapter 2: Introduction to machine learning -- Chapter 3: Basics of neural networks -- Chapter 4: Advanced neural networks -- Chapter 5: Sampling -- Chapter 6: Unsupervised deep learning -- Part II Applications to physics -- Chapter 7: Inverse problems in physics -- Chapter 8: Detection of phase transition by machines -- Chapter 9: Dynamical systems and neural networks -- Chapter 10: Spinglass and neural networks -- Chapter 11: Quantum manybody systems, tensor networks and neural networks -- Chapter 12: Application to superstring theory -- Chapter 13: Epilogue -- Bibliography -- Index., What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
ctrlnum (DE-627)1759943428, (DE-599)KXP1759943428, (OCoLC)1255400507
doi_str_mv 10.1007/978-981-33-6108-9
facet_avail Local
facet_local_del330 Maschinelles Lernen, Physik
finc_class_facet Informatik, Mathematik, Physik
fincclass_txtF_mv science-computerscience, science-mathematics, science-physics
format Book
format_access_txtF_mv Book, E-Book
format_de14 Book, E-Book
format_de15 Book, E-Book
format_del152 Buch
format_detail_txtF_mv text-print-monograph-independent
format_dezi4 e-Book
format_finc Book, E-Book
format_legacy Book
format_legacy_nrw Book, E-Book
format_nrw Book, E-Book
format_strict_txtF_mv Book
geogr_code not assigned
geogr_code_person not assigned
id 183-1759943428
illustrated Not Illustrated
imprint Singapore, Springer, [2021]
imprint_str_mv Singapore: Springer, [2021]
institution FID-BBI-DE-23
is_hierarchy_id
is_hierarchy_title
isbn 9789813361072
isbn_isn_mv 9789813361089
language English
last_indexed 2024-04-30T19:21:08.752Z
marc024a_ct_mv 10.1007/978-981-33-6108-9
marc_error [geogr_code]Unable to make public java.lang.AbstractStringBuilder java.lang.AbstractStringBuilder.append(java.lang.String) accessible: module java.base does not "opens java.lang" to unnamed module @64e01542
match_str tanaka2021deeplearningandphysics
mega_collection K10plus Verbundkatalog
oclc_num 1255400507
physical xiii, 207 Seiten; Illustrationen, Diagramme
publishDate [2021], , © 2021
publishDateSort 2021
publishPlace Singapore,
publisher Springer,
record_format marcfinc
record_id 1759943428
recordtype marcfinc
rvk_facet ST 300, SK 955
rvk_label Informatik, Monografien, Künstliche Intelligenz, Allgemeines, Mathematik, Computational physics
rvk_path ST, SQ - SU, SK 955, ST 300, SK, SA - SP, ST 300 - ST 308
rvk_path_str_mv ST, SQ - SU, SK 955, ST 300, SK, SA - SP, ST 300 - ST 308
series2 Mathematical physics studies
source_id 183
spelling Tanaka, Akinori VerfasserIn (DE-588)1234943107 (DE-627)1759944149 aut, Deep learning and physics Akinori Tanaka, Akio Tomiya, Koji Hashimoto, Singapore Springer [2021], © 2021, xiii, 207 Seiten Illustrationen, Diagramme, Text txt rdacontent, ohne Hilfsmittel zu benutzen n rdamedia, Band nc rdacarrier, Mathematical physics studies, Chapter 1: Forewords: Machine learning and physics -- Part I Physical view of deep learning -- Chapter 2: Introduction to machine learning -- Chapter 3: Basics of neural networks -- Chapter 4: Advanced neural networks -- Chapter 5: Sampling -- Chapter 6: Unsupervised deep learning -- Part II Applications to physics -- Chapter 7: Inverse problems in physics -- Chapter 8: Detection of phase transition by machines -- Chapter 9: Dynamical systems and neural networks -- Chapter 10: Spinglass and neural networks -- Chapter 11: Quantum manybody systems, tensor networks and neural networks -- Chapter 12: Application to superstring theory -- Chapter 13: Epilogue -- Bibliography -- Index., What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored., Mathematical physics., Machine learning., s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd, s (DE-588)4045956-1 (DE-627)106199900 (DE-576)209067276 Physik gnd, (DE-627), Tomiya, Akio VerfasserIn (DE-588)1234944324 (DE-627)1759945390 aut, Hashimoto, Koji 1973- VerfasserIn (DE-588)1236058305 (DE-627)1761307215 aut, 9789813361089 eBook, Erscheint auch als Online-Ausgabe Tanaka, Akinori Deep Learning and Physics Singapore : Springer, 2021 1 Online-Ressource (XIII, 207 Seiten) (DE-627)1750020076 9789813361089, https://www.gbv.de/dms/tib-ub-hannover/1759943428.pdf V:DE-601 B:DE-89 pdf/application 2022-09-29 Inhaltsverzeichnis
spellingShingle Tanaka, Akinori, Tomiya, Akio, Hashimoto, Koji, Deep learning and physics, Chapter 1: Forewords: Machine learning and physics -- Part I Physical view of deep learning -- Chapter 2: Introduction to machine learning -- Chapter 3: Basics of neural networks -- Chapter 4: Advanced neural networks -- Chapter 5: Sampling -- Chapter 6: Unsupervised deep learning -- Part II Applications to physics -- Chapter 7: Inverse problems in physics -- Chapter 8: Detection of phase transition by machines -- Chapter 9: Dynamical systems and neural networks -- Chapter 10: Spinglass and neural networks -- Chapter 11: Quantum manybody systems, tensor networks and neural networks -- Chapter 12: Application to superstring theory -- Chapter 13: Epilogue -- Bibliography -- Index., What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored., Mathematical physics., Machine learning., Maschinelles Lernen, Physik
title Deep learning and physics
title_auth Deep learning and physics
title_full Deep learning and physics Akinori Tanaka, Akio Tomiya, Koji Hashimoto
title_fullStr Deep learning and physics Akinori Tanaka, Akio Tomiya, Koji Hashimoto
title_full_unstemmed Deep learning and physics Akinori Tanaka, Akio Tomiya, Koji Hashimoto
title_short Deep learning and physics
title_sort deep learning and physics
title_unstemmed Deep learning and physics
topic Mathematical physics., Machine learning., Maschinelles Lernen, Physik
topic_facet Mathematical physics., Machine learning., Maschinelles Lernen, Physik
url https://www.gbv.de/dms/tib-ub-hannover/1759943428.pdf
work_keys_str_mv AT tanakaakinori deeplearningandphysics, AT tomiyaakio deeplearningandphysics, AT hashimotokoji deeplearningandphysics